Part Number Hot Search : 
SU802833 IN74HC IN24LC16 BC327 E12KG2C HCF4002 TC9134P ULN2004L
Product Description
Full Text Search
 

To Download M95160-WMN6T Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M95160 M95080
16Kbit and 8Kbit Serial SPI Bus EEPROM With High Speed Clock
FEATURES SUMMARY


Compatible with SPI Bus Serial Interface (Positive Clock SPI Modes) Single Supply Voltage: - 4.5 to 5.5V for M95xxx - 2.5 to 5.5V for M95xxx-W - 1.8 to 5.5V for M95xxx-R High Speed - 10MHz Clock Rate, 5ms Write Time Status Register Hardware Protection of the Status Register BYTE and PAGE WRITE (up to 32 Bytes) Self-Timed Programming Cycle Adjustable Size Read-Only EEPROM Area Enhanced ESD Protection More than 1 Million Erase/Write Cycles More than 40-Year Data Retention
Figure 1. Packages
8 1
PDIP8 (BN)
8 1
SO8 (MN) 150 mil width
TSSOP8 (DW) 169 mil width
Table 1. Product List
Reference Part Number M95160 M95160 M95160-W M95160-R M95080 M95080 M95080-W M95080-R UFDFPN8 (MB) 2x3mm (MLP) TSSOP8 (DS) 3x3mm body size (MSOP)
October 2004
1/40
M95160, M95080
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Product List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3. DIP, SO, TSSOP and MLP Connections (Top View). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SIGNAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Serial Data Output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Serial Data Input (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 CONNECTING TO THE SPI BUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 4. Bus Master and Memory Devices on the SPI Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 5. SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 OPERATING FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power On Reset: VCC Lock-Out Write Protect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Active Power and Standby Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Hold Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3. Status Register Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Data Protection and Protocol Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 4. Write-Protected Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 6. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 INSTRUCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 5. Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/40
M95160, M95080
Figure 7. Write Enable (WREN) Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Write Disable (WRDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 8. Write Disable (WRDI) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 WIP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 WEL bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 BP1, BP0 bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SRWD bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 9. Read Status Register (RDSR) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Write Status Register (WRSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 6. Protection Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 7. Address Range Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 10.Write Status Register (WRSR) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Read from Memory Array (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11.Read from Memory Array (READ) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Write to Memory Array (WRITE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 12.Byte Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 13.Page Write (WRITE) Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 POWER-UP AND DELIVERY STATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Power-up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Initial Delivery State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 8. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 9. Operating Conditions (M95xxx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 10. Operating Conditions (M95xxx-W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 11. Operating Conditions (M95xxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 12. AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 14.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 13. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 14. DC Characteristics (M95xxx, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 15. DC Characteristics (M95xxx, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 16. DC Characteristics (M95xxx-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 17. DC Characteristics (M95xxx-W, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 18. DC Characteristics (M95xxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 19. AC Characteristics (M95xxx, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 20. AC Characteristics (M95xxx, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 21. AC Characteristics (M95xxx-W, Device Grade 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 22. AC Characteristics (M95xxx-W, Device Grade 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 23. AC Characteristics (M95xxx-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Figure 15.Serial Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 16.Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Figure 17.Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3/40
M95160, M95080
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 18.PDIP8 - 8 pin Plastic DIP, 0.25mm lead frame, Package Outline . . . . . . . . . . . . . . . . . 33 Table 24. PDIP8 - 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data . . . . . . . . . . 33 Figure 19.SO8 narrow - 8 lead Plastic Small Outline, 150 mils body width, Package Outline . . . . 34 Table 25. SO8 narrow - 8 lead Plastic Small Outline, 150 mils body width, Mechanical Data . . . . 34 Figure 20.UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm, Outline 35 Table 26. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm, Data . 35 Figure 21.TSSOP8 - 8 lead Thin Shrink Small Outline, Package Outline . . . . . . . . . . . . . . . . . . . 36 Table 27. TSSOP8 - 8 lead Thin Shrink Small Outline, Package Mechanical Data . . . . . . . . . . . . 36 Figure 22.TSSOP8 3x3mm - 8 lead Thin Shrink Small Outline, 3x3mm body size, Package Outline 37 Table 28. TSSOP8 3x3mm - 8 lead Thin Shrink Small Outline, 3x3mm body size, Mechanical Data 37 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 29. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 30. How to Identify Present and Previous Products by the Process Identification Letter . . . 38 REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 31. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4/40
M95160, M95080
SUMMARY DESCRIPTION
These electrically erasable programmable memory (EEPROM) devices are accessed by a high speed SPI-compatible bus. The memory array is organized as 2048 x 8 bit (M95160), and 1024 x 8 bit (M95080). The device is accessed by a simple serial interface that is SPI-compatible. The bus signals are C, D and Q, as shown in Table 2. and Figure 2.. The device is selected when Chip Select (S) is taken Low. Communications with the device can be interrupted using Hold (HOLD). Figure 2. Logic Diagram
VCC
Note: See PACKAGE MECHANICAL section for package dimensions, and how to identify pin-1.
Figure 3. DIP, SO, TSSOP and MLP Connections (Top View)
M95xxx S Q W VSS 1 2 3 4 8 7 6 5
AI01790D
VCC HOLD C D
D C S W HOLD M95xxx
Q
Table 2. Signal Names
C D Q Serial Clock Serial Data Input Serial Data Output Chip Select Write Protect Hold Supply Voltage Ground
S
W HOLD
VSS
AI01789C
VCC VSS
5/40
M95160, M95080
SIGNAL DESCRIPTION
During all operations, V CC must be held stable and within the specified valid range: VCC(min) to VCC(max). All of the input and output signals must be held High or Low (according to voltages of VIH, VOH, VIL or VOL, as specified in Table 14. to Table 18.). These signals are described next. Serial Data Output (Q). This output signal is used to transfer data serially out of the device. Data is shifted out on the falling edge of Serial Clock (C). Serial Data Input (D). This input signal is used to transfer data serially into the device. It receives instructions, addresses, and the data to be written. Values are latched on the rising edge of Serial Clock (C). Serial Clock (C). This input signal provides the timing of the serial interface. Instructions, addresses, or data present at Serial Data Input (D) are latched on the rising edge of Serial Clock (C). Data on Serial Data Output (Q) changes after the falling edge of Serial Clock (C). Chip Select (S). When this input signal is High, the device is deselected and Serial Data Output (Q) is at high impedance. Unless an internal Write cycle is in progress, the device will be in the Standby Power mode. Driving Chip Select (S) Low selects the device, placing it in the Active Power mode. After Power-up, a falling edge on Chip Select (S) is required prior to the start of any instruction. Hold (HOLD). The Hold (HOLD) signal is used to pause any serial communications with the device without deselecting the device. During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data Input (D) and Serial Clock (C) are Don't Care. To start the Hold condition, the device must be selected, with Chip Select (S) driven Low. Write Protect (W). The main purpose of this input signal is to freeze the size of the area of memory that is protected against Write instructions (as specified by the values in the BP1 and BP0 bits of the Status Register). This pin must be driven either High or Low, and must be stable during all write instructions.
6/40
M95160, M95080
CONNECTING TO THE SPI BUS
These devices are fully compatible with the SPI protocol. All instructions, addresses and input data bytes are shifted in to the device, most significant bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C) after Chip Select (S) goes Low. All output data bytes are shifted out of the device, most significant bit first. The Serial Data Output (Q) is latched on the first falling edge of the Serial Clock (C) after the instruction (such as the Read from Memory Array and Read Status Register instructions) have been clocked into the device. Figure 4. shows three devices, connected to an MCU, on a SPI bus. Only one device is selected at a time, so only one device drives the Serial Data Output (Q) line at a time, all the others being high impedance.
Figure 4. Bus Master and Memory Devices on the SPI Bus
SDO SPI Interface with (CPOL, CPHA) = (0, 0) or (1, 1) SDI SCK CQD Bus Master (ST6, ST7, ST9, ST10, Others) SPI Memory Device CS3 CS2 CS1 S W HOLD S W HOLD S W HOLD SPI Memory Device SPI Memory Device CQD CQD
AI03746D
Note: The Write Protect (W) and Hold (HOLD) signals should be driven, High or Low as appropriate.
7/40
M95160, M95080
SPI Modes These devices can be driven by a microcontroller with its SPI peripheral running in either of the two following modes: - CPOL=0, CPHA=0 - CPOL=1, CPHA=1 For these two modes, input data is latched in on the rising edge of Serial Clock (C), and output data Figure 5. SPI Modes Supported
CPOL CPHA C
is available from the falling edge of Serial Clock (C). The difference between the two modes, as shown in Figure 5., is the clock polarity when the bus master is in Stand-by mode and not transferring data: - C remains at 0 for (CPOL=0, CPHA=0) - C remains at 1 for (CPOL=1, CPHA=1)
0
0
1
1
C
D
MSB
Q
MSB
AI01438B
8/40
M95160, M95080
OPERATING FEATURES
Power-up When the power supply is turned on, V CC rises from VSS to VCC. During this time, the Chip Select (S) must be allowed to follow the V CC voltage. It must not be allowed to float, but should be connected to VCC via a suitable pull-up resistor. As a built in safety feature, Chip Select (S) is edge sensitive as well as level sensitive. After Powerup, the device does not become selected until a falling edge has first been detected on Chip Select (S). This ensures that Chip Select (S) must have been High, prior to going Low to start the first operation. Power On Reset: V CC Lock-Out Write Protect In order to prevent data corruption and inadvertent Write instructions during Power-up, a Power On Reset (POR) circuit is included. The internal reset is held active until V CC has reached the Power On Reset (POR) threshold voltage, and all operations are disabled - the device will not respond to any instruction. In the same way, when VCC drops from the operating voltage, below the Power On Reset (POR) threshold voltage, all operations are disabled and the device will not respond to any instruction. A stable and valid VCC must be applied before applying any logic signal. Power-down At Power-down, the device must be deselected. Chip Select (S) should be allowed to follow the voltage applied on V CC. Active Power and Standby Power Modes When Chip Select (S) is Low, the device is selected, and in the Active Power mode. The device consumes ICC, as specified in Table 14. to Table 18.. When Chip Select (S) is High, the device is deselected. If an Erase/Write cycle is not currently in progress, the device then goes in to the Standby Power mode, and the device consumption drops to ICC1. Hold Condition The Hold (HOLD) signal is used to pause any serial communications with the device without resetting the clocking sequence. During the Hold condition, the Serial Data Output (Q) is high impedance, and Serial Data Input (D) and Serial Clock (C) are Don't Care. To enter the Hold condition, the device must be selected, with Chip Select (S) Low. Normally, the device is kept selected, for the whole duration of the Hold condition. Deselecting the device while it is in the Hold condition, has the effect of resetting the state of the device, and this mechanism can be used if it is required to reset any processes that had been in progress. The Hold condition starts when the Hold (HOLD) signal is driven Low at the same time as Serial Clock (C) already being Low. The Hold condition ends when the Hold (HOLD) signal is driven High at the same time as Serial Clock (C) already being Low.
9/40
M95160, M95080
Status Register Figure 6. shows the position of the Status Register in the control logic of the device. The Status Register contains a number of status and control bits that can be read or set (as appropriate) by specific instructions. WIP bit. The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register cycle. WEL bit. The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. BP1, BP0 bits. The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Write instructions. SRWD bit. The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware Protected mode. In this mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits. Table 3. Status Register Format
b7 SRWD 0 0 0 BP1 BP0 WEL b0 WIP
Status Register Write Protect Block Protect Bits Write Enable Latch Bit Write In Progress Bit
Data Protection and Protocol Control Non-volatile memory devices can be used in environments that are particularly noisy, and within applications that could experience problems if memory bytes are corrupted. Consequently, the Table 4. Write-Protected Block Size
Status Register Bits Protected Block BP1 0 0 1 1 BP0 0 1 0 1 none Upper quarter Upper half Whole memory
device features the following data protection mechanisms: Write and Write Status Register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution. All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state by the following events: - Power-up - Write Disable (WRDI) instruction completion - Write Status Register (WRSR) instruction completion - Write (WRITE) instruction completion The Block Protect (BP1, BP0) bits allow part of the memory to be configured as read-only. This is the Software Protected Mode (SPM). The Write Protect (W) signal allows the Block Protect (BP1, BP0) bits to be protected. This is the Hardware Protected Mode (HPM). For any instruction to be accepted, and executed, Chip Select (S) must be driven High after the rising edge of Serial Clock (C) for the last bit of the instruction, and before the next rising edge of Serial Clock (C). Two points need to be noted in the previous sentence: - The `last bit of the instruction' can be the eighth bit of the instruction code, or the eighth bit of a data byte, depending on the instruction (except for Read Status Register (RDSR) and Read (READ) instructions). - The `next rising edge of Serial Clock (C)' might (or might not) be the next bus transaction for some other device on the SPI bus.
Array Addresses Protected M95160 none 0600h - 07FFh 0400h - 07FFh 0000h - 07FFh M95080 none 0300h - 03FFh 0200h - 03FFh 0000h - 03FFh
10/40
M95160, M95080
MEMORY ORGANIZATION
The memory is organized as shown in Figure 6.. Figure 6. Block Diagram
HOLD W S C D Q Control Logic
High Voltage Generator
I/O Shift Register
Address Register and Counter
Data Register Status Register
Size of the Read only EEPROM area
Y Decoder
1 Page
X Decoder
AI01272C
11/40
M95160, M95080
INSTRUCTIONS
Each instruction starts with a single-byte code, as summarized in Table 5.. If an invalid instruction is sent (one not contained in Table 5.), the device automatically deselects itself. Table 5. Instruction Set
Instruc tion WREN WRDI RDSR WRSR READ WRITE Description Write Enable Write Disable Read Status Register Write Status Register Read from Memory Array Write to Memory Array Instruction Format 0000 0110 0000 0100 0000 0101 0000 0001 0000 0011 0000 0010
12/40
M95160, M95080
Write Enable (WREN) The Write Enable Latch (WEL) bit must be set prior to each WRITE and WRSR instruction. The only way to do this is to send a Write Enable instruction to the device. Figure 7. Write Enable (WREN) Sequence As shown in Figure 7., to send this instruction to the device, Chip Select (S) is driven Low, and the bits of the instruction byte are shifted in, on Serial Data Input (D). The device then enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven High.
S 0 C Instruction D High Impedance Q
AI02281E
1
2
3
4
5
6
7
Write Disable (WRDI) One way of resetting the Write Enable Latch (WEL) bit is to send a Write Disable instruction to the device. As shown in Figure 8., to send this instruction to the device, Chip Select (S) is driven Low, and the bits of the instruction byte are shifted in, on Serial Data Input (D).
The device then enters a wait state. It waits for a the device to be deselected, by Chip Select (S) being driven High. The Write Enable Latch (WEL) bit, in fact, becomes reset by any of the following events: - Power-up - WRDI instruction execution - WRSR instruction completion - WRITE instruction completion.
Figure 8. Write Disable (WRDI) Sequence
S 0 C Instruction D High Impedance Q
AI03750D
1
2
3
4
5
6
7
13/40
M95160, M95080
Read Status Register (RDSR) The Read Status Register (RDSR) instruction allows the Status Register to be read. The Status Register may be read at any time, even while a Write or Write Status Register cycle is in progress. When one of these cycles is in progress, it is recommended to check the Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible to read the Status Register continuously, as shown in Figure 9.. The status and control bits of the Status Register are as follows: WIP bit. The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register cycle. When set to 1, such a cycle is in progress, when reset to 0 no such cycle is in progress. WEL bit. The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write or Write Status Register instruction is accepted. Figure 9. Read Status Register (RDSR) Sequence BP1, BP0 bits. The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Write instructions. These bits are written with the Write Status Register (WRSR) instruction. When one or both of the Block Protect (BP1, BP0) bits is set to 1, the relevant memory area (as defined in Table 3.) becomes protected against Write (WRITE) instructions. The Block Protect (BP1, BP0) bits can be written provided that the Hardware Protected mode has not been set. SRWD bit. The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware Protected mode (when the Status Register Write Disable (SRWD) bit is set to 1, and Write Protect (W) is driven Low). In this mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits and the Write Status Register (WRSR) instruction is no longer accepted for execution.
S 0 C Instruction D Status Register Out High Impedance Q 7 MSB 6 5 4 3 2 1 0 7 MSB
AI02031E
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
Status Register Out 6 5 4 3 2 1 0 7
14/40
M95160, M95080
Write Status Register (WRSR) The Write Status Register (WRSR) instruction allows new values to be written to the Status Register. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded and executed, the device sets the Write Enable Latch (WEL). The Write Status Register (WRSR) instruction is entered by driving Chip Select (S) Low, followed by the instruction code and the data byte on Serial Data Input (D). The instruction sequence is shown in Figure 10.. The Write Status Register (WRSR) instruction has no effect on b6, b5, b4, b1 and b0 of the Status Register. b6, b5 and b4 are always read as 0. Chip Select (S) must be driven High after the rising edge of Serial Clock (C) that latches in the eighth bit of the data byte, and before the next rising edge of Serial Clock (C). Otherwise, the Write Status Register (WRSR) instruction is not executed. As soon as Chip Select (S) is driven High, the selftimed Write Status Register cycle (whose duration is tW) is initiated. While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of the Write In Progress Table 6. Protection Modes
W Signal 1 0 1 SRWD Bit 0 0 1 Software Protected (SPM) Mode Write Protection of the Status Register Status Register is Writable (if the WREN instruction has set the WEL bit) The values in the BP1 and BP0 bits can be changed Status Register is Hardware write protected The values in the BP1 and BP0 bits cannot be changed Memory Content Protected Area1 Unprotected Area1
(WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Write Status Register cycle, and is 0 when it is completed. When the cycle is completed, the Write Enable Latch (WEL) is reset. The Write Status Register (WRSR) instruction allows the user to change the values of the Block Protect (BP1, BP0) bits, to define the size of the area that is to be treated as read-only, as defined in Table 3.. The Write Status Register (WRSR) instruction also allows the user to set or reset the Status Register Write Disable (SRWD) bit in accordance with the Write Protect (W) signal. The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware Protected Mode (HPM). The Write Status Register (WRSR) instruction is not executed once the Hardware Protected Mode (HPM) is entered. The contents of the Status Register Write Disable (SRWD) and Block Protect (BP1, BP0) bits are frozen at their current values from just before the start of the execution of Write Status Register (WRSR) instruction. The new, updated, values take effect at the moment of completion of the execution of Write Status Register (WRSR) instruction.
Write Protected
Ready to accept Write instructions
0
1
Hardware Protected (HPM)
Write Protected
Ready to accept Write instructions
Note: 1. As defined by the values in the Block Protect (BP1, BP0) bits of the Status Register, as shown in Table 6..
The protection features of the device are summarized in Table 4.. When the Status Register Write Disable (SRWD) bit of the Status Register is 0 (its initial delivery state), it is possible to write to the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction, regardless of the whether Write Protect (W) is driven High or Low. When the Status Register Write Disable (SRWD) bit of the Status Register is set to 1, two cases need to be considered, depending on the state of Write Protect (W):
-
-
If Write Protect (W) is driven High, it is possible to write to the Status Register provided that the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction. If Write Protect (W) is driven Low, it is not possible to write to the Status Register even if the Write Enable Latch (WEL) bit has previously been set by a Write Enable (WREN) instruction. (Attempts to write to the Status Register are rejected, and are not accepted for execution). As a consequence, all the data bytes in the memory area that are software protected (SPM) by the Block Protect
15/40
M95160, M95080
(BP1, BP0) bits of the Status Register, are also hardware protected against data modification. Regardless of the order of the two events, the Hardware Protected Mode (HPM) can be entered: - by setting the Status Register Write Disable (SRWD) bit after driving Write Protect (W) Low - or by driving Write Protect (W) Low after setting the Status Register Write Disable (SRWD) bit. The only way to exit the Hardware Protected Mode (HPM) once entered is to pull Write Protect (W) High. If Write Protect (W) is permanently tied High, the Hardware Protected Mode (HPM) can never be activated, and only the Software Protected Mode (SPM), using the Block Protect (BP1, BP0) bits of the Status Register, can be used. Table 7. Address Range Bits
Device Address Bits M95160 A10-A0 M95080 A9-A0
Note: b15 to b11 are Don't Care on the M95160. b15 to b10 are Don't Care on the M95080.
Figure 10. Write Status Register (WRSR) Sequence
S 0 C Instruction Status Register In 7 High Impedance Q
AI02282D
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
D
6
5
4
3
2
1
0
MSB
16/40
M95160, M95080
Read from Memory Array (READ) As shown in Figure 11., to send this instruction to the device, Chip Select (S) is first driven Low. The bits of the instruction byte and address bytes are then shifted in, on Serial Data Input (D). The address is loaded into an internal address register, and the byte of data at that address is shifted out, on Serial Data Output (Q). If Chip Select (S) continues to be driven Low, the internal address register is automatically incremented, and the byte of data at the new address is shifted out. When the highest address is reached, the address counter rolls over to zero, allowing the Read cycle to be continued indefinitely. The whole memory can, therefore, be read with a single READ instruction. The Read cycle is terminated by driving Chip Select (S) High. The rising edge of the Chip Select (S) signal can occur at any time during the cycle. The first byte addressed can be any byte within any page. The instruction is not accepted, and is not executed, if a Write cycle is currently in progress.
Figure 11. Read from Memory Array (READ) Sequence
S 0 C Instruction 16-Bit Address 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31
D High Impedance Q
15 14 13 MSB
3
2
1
0 Data Out 1 7 6 5 4 3 2 1 0 Data Out 2 7
MSB
AI01793D
Note: Depending on the memory size, as shown in Table 7., the most significant address bits are Don't Care.
17/40
M95160, M95080
Write to Memory Array (WRITE) As shown in Figure 12., to send this instruction to the device, Chip Select (S) is first driven Low. The bits of the instruction byte, address byte, and at least one data byte are then shifted in, on Serial Data Input (D). The instruction is terminated by driving Chip Select (S) High at a byte boundary of the input data. In the case of Figure 12., this occurs after the eighth bit of the data byte has been latched in, indicating that the instruction is being used to write a single byte. The self-timed Write cycle starts, and continues for a period tWC (as specified in Table 19. to Table 23.), at the end of which the Write in Progress (WIP) bit is reset to 0. If, though, Chip Select (S) continues to be driven Low, as shown in Figure 13., the next byte of input data is shifted in, so that more than a single byte, starting from the given address towards the end of the same page, can be written in a single internal Write cycle. Figure 12. Byte Write (WRITE) Sequence Each time a new data byte is shifted in, the least significant bits of the internal address counter are incremented. If the number of data bytes sent to the device exceeds the page boundary, the internal address counter rolls over to the beginning of the page, and the previous data there are overwritten with the incoming data. (The page size of these devices is 32 bytes). The instruction is not accepted, and is not executed, under the following conditions: - if the Write Enable Latch (WEL) bit has not been set to 1 (by executing a Write Enable instruction just before) - if a Write cycle is already in progress - if the device has not been deselected, by Chip Select (S) being driven High, at a byte boundary (after the eighth bit, b0, of the last data byte that has been latched in) - if the addressed page is in the region protected by the Block Protect (BP1 and BP0) bits.
S 0 C Instruction 16-Bit Address Data Byte 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31
D High Impedance Q
15 14 13
3
2
1
0
7
6
5
4
3
2
1
0
AI01795D
Note: Depending on the memory size, as shown in Table 7., the most significant address bits are Don't Care.
18/40
M95160, M95080
Figure 13. Page Write (WRITE) Sequence
S 0 C Instruction 16-Bit Address Data Byte 1 1 2 3 4 5 6 7 8 9 10 20 21 22 23 24 25 26 27 28 29 30 31
D
15 14 13
3
2
1
0
7
6
5
4
3
2
1
0
S 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 C Data Byte 2 Data Byte 3 Data Byte N
D
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
AI01796D
Note: Depending on the memory size, as shown in Table 7., the most significant address bits are Don't Care.
19/40
M95160, M95080
POWER-UP AND DELIVERY STATE
Power-up State After Power-up, the device is in the following state: - Standby Power mode - deselected (after Power-up, a falling edge is required on Chip Select (S) before any instructions can be started). - not in the Hold Condition - the Write Enable Latch (WEL) is reset to 0 - Write In Progress (WIP) is reset to 0 The SRWD, BP1 and BP0 bits of the Status Register are unchanged from the previous powerdown (they are non-volatile bits). Initial Delivery State The device is delivered with the memory array set at all 1s (FFh). The Status Register Write Disable (SRWD) and Block Protect (BP1 and BP0) bits are initialized to 0.
20/40
M95160, M95080
MAXIMUM RATING
Stressing the device outside the ratings listed in Table 8. may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the Operating sections of Table 8. Absolute Maximum Ratings
Symbol TSTG TLEAD VO VI VCC VESD Storage Temperature Lead Temperature during Soldering Output Voltage Input Voltage Supply Voltage Electrostatic Discharge Voltage (Human Body model) 2 Parameter Min. -65 Max. 150 Unit C C V V V V
this specification, is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
See note 1 -0.50 -0.50 -0.50 -4000 VCC+0.6 6.5 6.5 4000
Note: 1. Compliant with JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assembly), the ST ECOPACK (R) 7191395 specification, and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU 2. AEC-Q100-002 (compliant with JEDEC Std JESD22-A114A, C1=100pF, R1=1500, R2=500)
21/40
M95160, M95080
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC Characteristic tables that follow are derived from tests performed under the MeasureTable 9. Operating Conditions (M95xxx)
Symbol VCC TA Ambient Operating Temperature (Device Grade 3) -40 125 C Supply Voltage Ambient Operating Temperature (Device Grade 6) Parameter Min. 4.5 -40 Max. 5.5 85 Unit V C
ment Conditions summarized in the relevant tables. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters.
Table 10. Operating Conditions (M95xxx-W)
Symbol VCC TA Ambient Operating Temperature (Device Grade 3) -40 125 C Supply Voltage Ambient Operating Temperature (Device Grade 6) Parameter Min. 2.5 -40 Max. 5.5 85 Unit V C
Table 11. Operating Conditions (M95xxx-R)
Symbol VCC TA Supply Voltage Ambient Operating Temperature Parameter Min. 1 1.8 -40 Max. 1 5.5 85 Unit V C
Note: 1. This product is under development. For more information, please contact your nearest ST sales office.
Table 12. AC Measurement Conditions
Symbol CL Load Capacitance Input Rise and Fall Times Input Pulse Voltages Input and Output Timing Reference Voltages
Note: Output Hi-Z is defined as the point where data out is no longer driven.
Parameter
Min. 100
Max.
Unit pF
50 0.2VCC to 0.8VCC 0.3VCC to 0.7VCC
ns V V
Figure 14. AC Measurement I/O Waveform
Input Levels 0.8VCC Input and Output Timing Reference Levels 0.7VCC 0.3VCC
AI00825B
0.2VCC
22/40
M95160, M95080
Table 13. Capacitance
Symbol COUT CIN Parameter Output Capacitance (Q) Input Capacitance (D) Input Capacitance (other pins) Test Condition VOUT = 0V VIN = 0V VIN = 0V Min. Max. 8 8 6 Unit pF pF pF
Note: Sampled only, not 100% tested, at TA=25C and a frequency of 5 MHz.
Table 14. DC Characteristics (M95xxx, Device Grade 6)
Symbol ILI ILO Parameter Input Leakage Current Output Leakage Current Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 5MHz, VCC = 5 V, Q = open, Previous Product 2 C = 0.1VCC/0.9VCC at 10MHz, VCC = 5 V, Q = open, Present Product 3 S = VCC, VCC = 5 V, VIN = VSS or VCC, Previous Product 2 S = VCC, VCC = 5 V, VIN = VSS or VCC, Present Product 3 -0.45 0.7 VCC IOL = 2 mA, VCC = 5 V IOH = -2 mA, VCC = 5 V 0.8 VCC Min. Max. 2 2 4 5 10 Unit A A mA mA A
ICC
Supply Current
ICC1
Supply Current (Standby Power mode)
2 0.3 VCC VCC+1 0.4
A V V V V
VIL VIH VOL1 VOH1
Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage
Note: 1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards. 2. Previous product: identified by Process Identification letter L. 3. Present product: identified by Process Identification letter W or G.
23/40
M95160, M95080
Table 15. DC Characteristics (M95xxx, Device Grade 3)
Symbol ILI ILO Parameter Input Leakage Current Output Leakage Current Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 2 MHz, VCC = 5 V, Q = open, Previous Product 2 C = 0.1VCC/0.9VCC at 5 MHz, VCC = 5 V, Q = open, Present Product 3 S = VCC, VCC = 5 V, VIN = VSS or VCC, Previous Product 2 S = VCC, VCC = 5 V, VIN = VSS or VCC, Present Product 3 -0.45 0.7 VCC IOL = 2 mA, VCC = 5 V IOH = -2 mA, VCC = 5 V 0.8 VCC Min. Max. 2 2 4 Unit A A mA
ICC
Supply Current
3 10
mA A
ICC1
Supply Current (Standby Power mode)
5 0.3 VCC VCC+1 0.4
A V V V V
VIL VIH VOL1 VOH1
Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage
Note: 1. For all 5V range devices, the device meets the output requirements for both TTL and CMOS standards. 2. Previous product: identified by Process Identification letter L. 3. Present product: identified by Process Identification letter W or G.
Table 16. DC Characteristics (M95xxx-W, Device Grade 6)
Symbol ILI ILO Parameter Input Leakage Current Output Leakage Current Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 2 MHz, VCC = 2.5 V, Q = open, Previous Product 1 Supply Current C = 0.1VCC/0.9VCC at 5 MHz, VCC = 2.5 V, Q = open, Present Product 2 S = VCC, VCC = 2.5 V, VIN = VSS or VCC, Previous Product 1 S = VCC, VCC = 2.5 V VIN = VSS or VCC, Present Product 2 -0.45 0.7 VCC IOL = 1.5 mA, VCC = 2.5 V IOH = -0.4 mA, VCC = 2.5 V 0.8 VCC 2 mA Min. Max. 2 2 2 Unit A A mA
ICC
2 1 0.3 VCC VCC+1 0.4
A A V V V V
ICC1
Supply Current (Standby Power mode)
VIL VIH VOL VOH
Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage
Note: 1. Previous product: identified by Process Identification letter L. 2. Present product: identified by Process Identification letter W or G.
24/40
M95160, M95080
Table 17. DC Characteristics (M95xxx-W, Device Grade 3)
Symbol ILI ILO Parameter Input Leakage Current Output Leakage Current Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 2 MHz, VCC = 2.5 V, Q = open, Previous Product 1 C = 0.1VCC/0.9VCC at 5 MHz, VCC = 2.5 V, Q = open, Present Product 2 Supply Current (Standby Power mode) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage IOL = 1.5 mA, VCC = 2.5 V IOH = -0.4 mA, VCC = 2.5 V 0.8 VCC S = VCC, VCC = 2.5 V, VIN = VSS or VCC -0.45 0.7 VCC Min. Max. 2 2 5 Unit A A mA
ICC
Supply Current
2 2 0.3 VCC VCC+1 0.4
mA A V V V V
ICC1 VIL VIH VOL VOH
Note: 1. Previous product: identified by Process Identification letter L. 2. Present product: identified by Process Identification letter W or G.
Table 18. DC Characteristics (M95xxx-R)
Symbol ILI ILO ICC ICC1 VIL VIH VOL VOH Parameter Input Leakage Current Output Leakage Current Supply Current Supply Current (Standby Power mode) Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage IOL = 0.15 mA, VCC = 1.8 V IOH = -0.1 mA, VCC = 1.8 V 0.8 VCC Test Condition VIN = VSS or VCC S = VCC, VOUT = VSS or VCC C = 0.1VCC/0.9VCC at 2 MHz, VCC = 1.8 V, Q = open S = VCC, VIN = VSS or VCC, VCC = 1.8 V -0.45 0.7 VCC Min. 1 Max. 1 2 2 1 0.5 0.3 VCC VCC+1 0.3 Unit A A mA A V V V V
Note: 1. This product is under development. For more information, please contact your nearest ST sales office.
25/40
M95160, M95080
Table 19. AC Characteristics (M95xxx, Device Grade 6)
Test conditions specified in Table 12. and Table 9. Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH 1 tCL 1 tCLCH 2 tCHCL 2 tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ 2 tCLQV tCLQX tQLQH 2 tQHQL 2 tHHQV tHLQZ 2 tW
Note: 1. 2. 3. 4. 5.
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min.4 D.C. 90 90 100 90 90 90 90
Max.4 5
Min.5 D.C. 15 15 40 25 15 40 40
Max.5 10
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
1 1 20 30 70 40 0 0 100 60 0 50 50 50 100 10 0 15 15 15 20 0 0
1 1
s s ns ns ns ns ns ns
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
25 35
ns ns ns
20 20 25 35 5
ns ns ns ns ms
tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max) Value guaranteed by characterization, not 100% tested in production. To be characterized. Previous product: identified by Process Identification letter L. Present product: identified by Process Identification letter W or G.
26/40
M95160, M95080
Table 20. AC Characteristics (M95xxx, Device Grade 3)
Test conditions specified in Table 12. and Table 9. Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH 1 tCL 1 tCLCH 2 tCHCL 2 tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ 2 tCLQV tCLQX tQLQH 2 tQHQL 2 tHHQV tHLQZ 2 tW
Note: 1. 2. 3. 4. 5.
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min.4 D.C. 200 200 200 200 200 200 200
Max.4 2
Min.5 D.C. 90 90 100 90 90 90 90
Max.5 5
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
1 1 40 50 140 90 0 0 250 150 0 100 100 100 250 10 0 20 30 70 40 0 0
1 1
s s ns ns ns ns ns ns
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
100 60
ns ns ns
50 50 50 100 5
ns ns ns ns ms
tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max) Value guaranteed by characterization, not 100% tested in production. To be characterized. Previous product: identified by Process Identification letter L. Present product: identified by Process Identification letter W or G.
27/40
M95160, M95080
Table 21. AC Characteristics (M95xxx-W, Device Grade 6)
Test conditions specified in Table 12. and Table 10. Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH 1 tCL 1 tCLCH 2 tCHCL 2 tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ 2 tCLQV tCLQX tQLQH 2 tQHQL 2 tHHQV tHLQZ 2 tW
Note: 1. 2. 3. 4. 5.
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min.4 D.C. 200 200 200 200 200 200 200
Max.4 2
Min.5 D.C. 90 90 100 90 90 90 90
Max.5 5
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
1 1 40 50 140 90 0 0 250 150 0 100 100 100 250 10 0 20 30 70 40 0 0
1 1
s s ns ns ns ns ns ns
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
100 60
ns ns ns
50 50 50 100 5
ns ns ns ns ms
tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max) Value guaranteed by characterization, not 100% tested in production. To be characterized. Previous product: identified by Process Identification letter L. Present product: identified by Process Identification letter W or G.
28/40
M95160, M95080
Table 22. AC Characteristics (M95xxx-W, Device Grade 3)
Test conditions specified in Table 12. and Table 10. Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH 1 tCL 1 tCLCH 2 tCHCL 2 tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ 2 tCLQV tCLQX tQLQH 2 tQHQL 2 tHHQV tHLQZ 2 tW
Note: 1. 2. 3. 4. 5.
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min.4 D.C. 200 200 200 200 200 200 200
Max.4 2
Min.5 D.C. 90 90 100 90 90 90 90
Max.5 5
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
1 1 40 50 140 90 0 0 250 150 0 100 100 100 250 10 0 20 30 70 40 0 0
1 1
s s ns ns ns ns ns ns
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
100 60
ns ns ns
50 50 50 100 5
ns ns ns ns ms
tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max) Value guaranteed by characterization, not 100% tested in production. To be characterized. Previous product: identified by Process Identification letter L. Present product: identified by Process Identification letter W or G.
29/40
M95160, M95080
Table 23. AC Characteristics (M95xxx-R)
Test conditions specified in Table 12. and Table 11. Symbol fC tSLCH tSHCH tSHSL tCHSH tCHSL tCH 1 tCL 1 tCLCH 2 tCHCL 2 tDVCH tCHDX tHHCH tHLCH tCLHL tCLHH tSHQZ 2 tCLQV tCLQX tQLQH 2 tQHQL 2 tHHQV tHLQZ 2 tW
Note: 1. 2. 3. 4. 5.
Alt. fSCK tCSS1 tCSS2 tCS tCSH Clock Frequency
Parameter
Min.4,5 D.C. 200 200 200 200 200 200 200
Max.4,5 2
Unit MHz ns ns ns ns ns ns ns
S Active Setup Time S Not Active Setup Time S Deselect Time S Active Hold Time S Not Active Hold Time
tCLH tCLL tRC tFC tDSU tDH
Clock High Time Clock Low Time Clock Rise Time Clock Fall Time Data In Setup Time Data In Hold Time Clock Low Hold Time after HOLD not Active Clock Low Hold Time after HOLD Active Clock Low Set-up Time before HOLD Active Clock Low Set-up Time before HOLD not Active
1 1 40 50 140 90 0 0 250 150 0 100 100 100 250 10
s s ns ns ns ns ns ns ns ns ns ns ns ns ns ms
tDIS tV tHO tRO tFO tLZ tHZ tWC
Output Disable Time Clock Low to Output Valid Output Hold Time Output Rise Time Output Fall Time HOLD High to Output Valid HOLD Low to Output High-Z Write Time
tCH + tCL must never be less than the shortest possible clock period, 1 / fC(max) Value guaranteed by characterization, not 100% tested in production. To be characterized. This product is under development. For more information, please contact your nearest ST sales office. This is preliminary data.
30/40
M95160, M95080
Figure 15. Serial Input Timing
tSHSL S tCHSL C tDVCH tCHDX D MSB IN tCLCH LSB IN tCHCL tSLCH tCHSH tSHCH
Q
High Impedance
AI01447C
Figure 16. Hold Timing
S tHLCH tCLHL C tCLHH tHLQZ Q tHHQV tHHCH
D
HOLD
AI01448B
31/40
M95160, M95080
Figure 17. Output Timing
S tCH C tCLQV tCLQX Q tQLQH tQHQL D ADDR.LSB IN
AI01449D
tCLQV tCLQX
tCL
tSHQZ
LSB OUT
32/40
M95160, M95080
PACKAGE MECHANICAL
Figure 18. PDIP8 - 8 pin Plastic DIP, 0.25mm lead frame, Package Outline
b2 A2 A1 b e A L
E
c eA eB
D
8
E1
1 PDIP-B
Note: Drawing is not to scale.
Table 24. PDIP8 - 8 pin Plastic DIP, 0.25mm lead frame, Package Mechanical Data
mm Symb. Typ. A A1 A2 b b2 c D E E1 e eA eB L 3.30 2.92 3.30 0.46 1.52 0.25 9.27 7.87 6.35 2.54 7.62 0.38 2.92 0.36 1.14 0.20 9.02 7.62 6.10 - - 4.95 0.56 1.78 0.36 10.16 8.26 7.11 - - 10.92 3.81 0.130 0.115 0.130 0.018 0.060 0.010 0.365 0.310 0.250 0.100 0.300 Min. Max. 5.33 0.015 0.115 0.014 0.045 0.008 0.355 0.300 0.240 - - 0.195 0.022 0.070 0.014 0.400 0.325 0.280 - - 0.430 0.150 Typ. Min. Max. 0.210 inches
33/40
M95160, M95080
Figure 19. SO8 narrow - 8 lead Plastic Small Outline, 150 mils body width, Package Outline
h x 45 A2 B e D A C ddd
8
E
1
H A1 L
SO-A
Note: Drawing is not to scale.
Table 25. SO8 narrow - 8 lead Plastic Small Outline, 150 mils body width, Mechanical Data
millimeters Symbol Typ A A1 A2 B C D ddd E e H h L 1.27 3.80 - 5.80 0.25 0.40 0 8 Min 1.35 0.10 1.10 0.33 0.19 4.80 Max 1.75 0.25 1.65 0.51 0.25 5.00 0.10 4.00 - 6.20 0.50 0.90 8 8 0.050 0.150 - 0.228 0.010 0.016 0 Typ Min 0.053 0.004 0.043 0.013 0.007 0.189 Max 0.069 0.010 0.065 0.020 0.010 0.197 0.004 0.157 - 0.244 0.020 0.035 8 inches
N
34/40
M95160, M95080
Figure 20. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm, Outline
D L3
e
b L1
E
E2
L A D2 ddd A1
UFDFPN-01
Note: 1. Drawing is not to scale. 2. The central pad (the area E2 by D2 in the above illustration) is pulled, internally, to VSS. It must not be allowed to be connected to any other voltage or signal line on the PCB, for example during the soldering process.
Table 26. UFDFPN8 (MLP8) 8-lead Ultra thin Fine pitch Dual Flat Package No lead 2x3mm, Data
mm Symbol Typ. A A1 b D D2 ddd E E2 e L L1 L3 N 8 0.30 8 0.50 0.45 3.00 0.15 - 0.40 0.25 - 0.50 0.15 0.012 0.020 0.018 0.25 2.00 1.55 1.65 0.05 0.118 0.006 - 0.016 0.010 - 0.020 0.006 0.55 Min. 0.50 0.00 0.20 Max. 0.60 0.05 0.30 0.010 0.079 0.061 0.065 0.002 Typ. 0.022 Min. 0.020 0.000 0.008 Max. 0.024 0.002 0.012 inches
35/40
M95160, M95080
Figure 21. TSSOP8 - 8 lead Thin Shrink Small Outline, Package Outline
D
8
5
c
E1 E
1
4
A1 A CP b e A2
L L1
TSSOP8AM
Note: Drawing is not to scale.
Table 27. TSSOP8 - 8 lead Thin Shrink Small Outline, Package Mechanical Data
millimeters Symbol Typ A A1 A2 b c CP D e E E1 L L1 3.000 0.650 6.400 4.400 0.600 1.000 0 8 8 8 2.900 - 6.200 4.300 0.450 1.000 0.050 0.800 0.190 0.090 Min Max 1.200 0.150 1.050 0.300 0.200 0.100 3.100 - 6.600 4.500 0.750 0.1181 0.0256 0.2520 0.1732 0.0236 0.0394 0 8 0.1142 - 0.2441 0.1693 0.0177 0.0394 0.0020 0.0315 0.0075 0.0035 Typ Min Max 0.0472 0.0059 0.0413 0.0118 0.0079 0.0039 0.1220 - 0.2598 0.1772 0.0295 inches
N
36/40
M95160, M95080
Figure 22. TSSOP8 3x3mm - 8 lead Thin Shrink Small Outline, 3x3mm body size, Package Outline
D
8
5 E1 E
c
1
4
A1 A CP b e A2
L L1
TSSOP8BM
Note: Drawing is not to scale.
Table 28. TSSOP8 3x3mm - 8 lead Thin Shrink Small Outline, 3x3mm body size, Mechanical Data
millimeters Symbol Typ A A1 A2 b c D E E1 e CP L L1 0.550 0.950 0 8 6 8 0.400 3.000 4.900 3.000 0.650 0.850 0.050 0.750 0.250 0.130 2.900 4.650 2.900 - Min Max 1.100 0.150 0.950 0.400 0.230 3.100 5.150 3.100 - 0.100 0.700 0.0217 0.0374 0 6 0.0157 0.1181 0.1929 0.1181 0.0256 0.0335 0.0020 0.0295 0.0098 0.0051 0.1142 0.1831 0.1142 - Typ Min Max 0.0433 0.0059 0.0374 0.0157 0.0091 0.1220 0.2028 0.1220 - 0.0039 0.0276 inches
N
37/40
M95160, M95080
PART NUMBERING
Table 29. Ordering Information Scheme
Example: Device Type M95 = SPI serial access EEPROM Device Function 160 = 16 Kbit (2048 x 8) 080 = 8 Kbit (1024 x 8) Operating Voltage blank = VCC = 4.5 to 5.5V W = VCC = 2.5 to 5.5V R = VCC = 1.8 to 5.5V Package BN = PDIP8 MN = SO8 (150 mil width) DW 2 = TSSOP8 DS3 = TSSOP8 (3x3mm body size, MSOP) MB = MLP8 (UFDFPN8) Device Grade 6 = Industrial temperature range, -40 to 85 C. Device tested with standard test flow 3 = Device tested with High Reliability Certified Flow 1. Automotive temperature range (-40 to 125 C) Option blank = Standard Packing T = Tape and Reel Packing Plating Technology blank = Standard SnPb plating P = Lead-Free and RoHS compliant G = Lead-Free, RoHS compliant, Sb2O3-free and TBBA-free Process4 blank = F6SP20% /W = F6SP36%
Note: 1. ST strongly recommends the use of the Automotive Grade devices for use in an automotive environment. The High Reliability Certified Flow (HRCF) is described in the quality note QNEE9801. Please ask your nearest ST sales office for a copy. 2. TSSOP8, 169 mil width, package is not available for the M95160 identified by the process identification letter L. 3. TSSOP8, 3x3mm body size, package is available for the M95080 series only. 4. Used only for Device Grade 3
M95160
-
W MN
6
T
P
/W
For a list of available options (speed, package, etc.) or for further information on any aspect of this
device, please contact your nearest ST Sales Office.
Table 30. How to Identify Present and Previous Products by the Process Identification Letter
Markings on Present Products1 95160W6 AYWWW (or AYWWG) Markings on Previous Products1 95160W6 AYWWL
Note: 1. This example comes from the S08 package. Other packages have similar information. For further information, please ask your ST Sales Office for Process Change Notice PCN MPG/EE/0034 (PCEE0034).
38/40
M95160, M95080
REVISION HISTORY
Table 31. Document Revision History
Date 19-Jul-2001 06-Feb-2002 18-Oct-2002 04-Nov-2002 13-Nov-2002 21-Nov-2003 Rev. 1.0 1.1 1.2 1.3 1.4 2.0 Description of Revision Document written from previous M95640/320/160/080 datasheet Announcement made of planned upgrade to 10MHz clock for the 5V, -40 to 85C, range TSSOP8 (3x3mm body size, MSOP8) package added New products, identified by the process letter W, added Correction to footnote in Ordering Information table Table of contents, and Pb-free options added. VIL(min) improved to -0.45V MLP8 package added. Absolute Maximum Ratings for VIO(min) and VCC(min) improved. Soldering temperature information clarified for RoHS compliant devices. Device Grade 3 clarified, with reference to HRCF and automotive environments. Process identification letter "G" information added. SO8 narrow and TSSOP8 Package mechanical specifications updated. Product List summary table added. AEC-Q100-002 compliance. tHHQX corrected to tHHQV. 10MHz, 5ms Write is now the present product. tCH+tCL<1/fC constraint clarified
08-Jun-2004
3.0
07-Oct-2004
4.0
39/40
M95160, M95080
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
40/40


▲Up To Search▲   

 
Price & Availability of M95160-WMN6T

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X